略微加速

Elasticsearch权威指南 - 互联网笔记

分析与分析器 | Elasticsearch: 权威指南 | Elastic

2024-11-22

分析与分析器编辑

分析 包含下面的过程:

  • 首先,将一块文本分成适合于倒排索引的独立的 词条
  • 之后,将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall

分析器执行上面的工作分析器 实际上是将三个功能封装到了一个包里:

字符过滤器
首先,字符串按顺序通过每个 字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉HTML,或者将 & 转化成 `and`。
分词器
其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。
Token 过滤器
最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化 Quick ),删除词条(例如, 像 a`, `and`, `the 等无用词),或者增加词条(例如,像 jumpleap 这种同义词)。

Elasticsearch提供了开箱即用的字符过滤器、分词器和token 过滤器。 这些可以组合起来形成自定义的分析器以用于不同的目的。我们会在 自定义分析器 章节详细讨论。

内置分析器编辑

但是, Elasticsearch还附带了可以直接使用的预包装的分析器。 接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:

"Set the shape to semi-transparent by calling set_trans(5)"
标准分析器

标准分析器是Elasticsearch默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。它会产生

set, the, shape, to, semi, transparent, by, calling, set_trans, 5
简单分析器

简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生

set, the, shape, to, semi, transparent, by, calling, set, trans
空格分析器

空格分析器在空格的地方划分文本。它会产生

Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
语言分析器

特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语 分析器附带了一组英语无用词(常用单词,例如 and 或者 the ,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干

英语 分词器会产生下面的词条:

set, shape, semi, transpar, call, set_tran, 5

注意看 transparent`、 `callingset_trans 已经变为词根格式。

什么时候使用分析器编辑

当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索的词条格式与索引中的词条格式一致。

全文查询,理解每个域是如何定义的,因此它们可以做 正确的事:

  • 当你查询一个 全文 域时, 会对查询字符串应用相同的分析器,以产生正确的搜索词条列表。
  • 当你查询一个 精确值 域时,不会分析查询字符串, 而是搜索你指定的精确值。

现在你可以理解在 开始章节 的查询为什么返回那样的结果:

  • date 域包含一个精确值:单独的词条 `2014-09-15`。
  • _all 域是一个全文域,所以分词进程将日期转化为三个词条: `2014`, `09`, 和 `15`。

当我们在 _all 域查询 2014`,它匹配所有的12条推文,因为它们都含有 `2014

GET /_search?q=2014              # 12 results

当我们在 _all 域查询 2014-09-15`,它首先分析查询字符串,产生匹配 `2014`, `09`, 或 `15任意 词条的查询。这也会匹配所有12条推文,因为它们都含有 2014

GET /_search?q=2014-09-15        # 12 results !

当我们在 date 域查询 `2014-09-15`,它寻找 精确 日期,只找到一个推文:

GET /_search?q=date:2014-09-15   # 1  result

当我们在 date 域查询 `2014`,它找不到任何文档,因为没有文档含有这个精确日志:

GET /_search?q=date:2014         # 0  results !

测试分析器编辑

有些时候很难理解分词的过程和实际被存储到索引中的词条,特别是你刚接触 Elasticsearch。为了理解发生了什么,你可以使用 analyze API 来看文本是如何被分析的。在消息体里,指定分析器和要分析的文本:

GET /_analyze
{
  "analyzer": "standard",
  "text": "Text to analyze"
}

结果中每个元素代表一个单独的词条:

{
   "tokens": [
      {
         "token":        "text",
         "start_offset": 0,
         "end_offset":   4,
         "type":         "<ALPHANUM>",
         "position":     1
      },
      {
         "token":        "to",
         "start_offset": 5,
         "end_offset":   7,
         "type":         "<ALPHANUM>",
         "position":     2
      },
      {
         "token":        "analyze",
         "start_offset": 8,
         "end_offset":   15,
         "type":         "<ALPHANUM>",
         "position":     3
      }
   ]
}

token 是实际存储到索引中的词条。 position 指明词条在原始文本中出现的位置。 start_offsetend_offset 指明字符在原始字符串中的位置。

提示

每个分析器的 type 值都不一样,可以忽略它们。它们在Elasticsearch中的唯一作用在于keep_types token 过滤器

analyze API 是一个有用的工具,它有助于我们理解Elasticsearch索引内部发生了什么,随着深入,我们会进一步讨论它。

指定分析器编辑

当Elasticsearch在你的文档中检测到一个新的字符串域 ,它会自动设置其为一个全文 字符串 域,使用 标准 分析器对它进行分析

你不希望总是这样。可能你想使用一个不同的分析器,适用于你的数据使用的语言。有时候你想要一个字符串域就是一个字符串域--不使用分析,直接索引你传入的精确值,例如用户ID或者一个内部的状态域或标签。

要做到这一点,我们必须手动指定这些域的映射。

官方地址:https://www.elastic.co/guide/cn/elasticsearch/guide/current/analysis-intro.html

北京半月雨文化科技有限公司.版权所有 京ICP备12026184号-3