模糊查询 | Elasticsearch: 权威指南 | Elastic
2024-12-25
fuzzy
查询是
term
查询的模糊等价。
也许你很少直接使用它,但是理解它是如何工作的,可以帮助你在更高级别的 match
查询中使用模糊性。
为了解它是如何运作的,我们首先索引一些文档:
POST /my_index/my_type/_bulk { "index": { "_id": 1 }} { "text": "Surprise me!"} { "index": { "_id": 2 }} { "text": "That was surprising."} { "index": { "_id": 3 }} { "text": "I wasn't surprised."}
现在我们可以为词 surprize
运行一个 fuzzy
查询:
GET /my_index/my_type/_search { "query": { "fuzzy": { "text": "surprize" } } }
fuzzy
查询是一个词项级别的查询,所以它不做任何分析。它通过某个词项以及指定的 fuzziness
查找到词典中所有的词项。
fuzziness
默认设置为 AUTO
。
在我们的例子中, surprise
比较 surprise
和 surprised
都在编辑距离 2 以内,
所以文档 1 和 3 匹配。通过以下查询,我们可以减少匹配度到仅匹配 surprise
:
GET /my_index/my_type/_search { "query": { "fuzzy": { "text": { "value": "surprize", "fuzziness": 1 } } } }
fuzzy
查询的工作原理是给定原始词项及构造一个 编辑自动机—
像表示所有原始字符串指定编辑距离的字符串的一个大图表。
然后模糊查询使用这个自动机依次高效遍历词典中的所有词项以确定是否匹配。 一旦收集了词典中存在的所有匹配项,就可以计算匹配文档列表。
当然,根据存储在索引中的数据类型,一个编辑距离 2 的模糊查询能够匹配一个非常大数量的词项同时执行效率会非常糟糕。 下面两个参数可以用来限制对性能的影响:
官方地址:https://www.elastic.co/guide/cn/elasticsearch/guide/current/fuzzy-query.html